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Figure 1: MultiEgo is the first multi-egocentric dynamic scene reconstruction dataset. The dataset provides essential data for
reconstruction tasks, including synchronized egocentric videos and accurate camera pose annotations. It also features various
challenges for reconstruction, such as human-driven camera motion, high-dynamic objects, and complex illumination.
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Abstract
Multi-view egocentric dynamic scene reconstruction holds signifi-
cant research value for applications in holographic documentation
of social interactions. However, existing reconstruction datasets
focus on static multi-view or single-egocentric view setups, lacking
multi-view egocentric datasets for dynamic scene reconstruction.
Therefore, we present MultiEgo, the first multi-view egocentric
dataset for 4D dynamic scene reconstruction. The dataset comprises
five canonical social interaction scenes: meetings, performances,
and a presentation. Each scene provides five authentic egocentric
videos captured by participants wearing AR glasses. We design a
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Table 1: Comparison of MultiEgo and existing egocentric and 4D reconstruction Datasets.

Egocentric Datasets 4D reconstruction DatasetsCharacter Ego4D [13] Ego-Exo4D [14] Epic-Kitchens [6–8] N3DV [25] D-NeRF [39] HyperNeRF [36] Ours

Dynamic scene ✓ ✓ ✓ ✓ ✓ ✓ ✓

Egocentric view ✓ ✓ ✓ ✗ ✓ ✓ ✓

Multi-perspective ✓ ✓ ✗ ✓ ✗ ✗ ✓

Multi-egocentric view ✓ ✗ ✗ ✗ ✗ ✗ ✓

Camera poses provided ✗ ✓ ✗ ✓ ✓ ✓ ✓

hardware-based data acquisition system and processing pipeline,
achieving sub-millisecond temporal synchronization across views,
coupled with accurate pose annotations. Experiment validation
demonstrates the practical utility and effectiveness of our dataset
for free-viewpoint video (FVV) applications, establishing MultiEgo
as a foundational resource for advancing multi-view egocentric dy-
namic scene reconstruction research. Our project page and dataset
are available at https://woxelikeloud.github.io/multiego/.
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1 Introduction
Free-viewpoint video (FVV), powered by dynamic scene model-
ing [3, 5, 10, 16, 18, 25, 36, 55, 56], represents a transformative
leap in next-generation visual representation through its capacity
for immersive real-time interaction. This paradigm unlocks un-
precedented opportunities in entertainment, virtual reality, and
human-computer interaction. Recent advances in novel view syn-
thesis, such as 3D Gaussian Splatting [22] (3DGS) have propelled
dynamic scene reconstruction to new heights of efficiency and
fidelity [17, 28, 33, 44, 49–51]. Meanwhile, the rise of smart wear-
able devices (e.g. AR glasses) is redefining acquisition paradigms
through lightweight, egocentric capture [6, 7, 11, 14, 31, 35, 45].
Unlike conventional fixed multi-camera systems [4, 24, 25, 40],
multi-user wearable frameworks offer dual advantages: 1) eliminat-
ing interference of acquisition equipment while preserving natural
participant behaviors, 2) enabling 4D social scene reconstruction
via multi-view fusion [20, 21, 43] in a more convenient way. These
innovations pave the way for practical applications such as FVV
meeting summaries and holographic concert recordings, heralding
a new era of deployable dynamic scene reconstruction.

However, existing datasets often exhibit critical limitations in
multi-egocentric view reconstruction research: (1) Most dynamic

scene datasets such as N3DV [25], employ fixed multi-camera se-
tups with static viewpoints, whereas multi-egocentric capture is
driven by natural human-driven motions; (2) While monocular
moving viewpoint datasets like HyperNeRF [36] and D-NeRF [39],
lack multiple egocentric views, resulting in less information in re-
constructing; (3) Egocentric-centric datasets such as HOI4D [31],
EPIC-Kitchens [6–8], EgoDex [15] primarily focus on human-object
interactions or activity recognition tasks, including comprehensive
benchmarks like Ego4D [13] and Ego-Exo4D [14] which emphasize
video understanding tasks rather than scene reconstruction. In a
nut shell, no existing dataset simultaneously provides multi-person
egocentric perspectives with synchronized pose estimations, which
is the critical capability our dataset explicitly addresses.

In this paper, we present MultiEgo, the first multi-egocentric
dynamic scene reconstruction dataset, addressing the limitations of
existing datasets that primarily focus on fixed-camera and monoc-
ular egocentric settings. The dataset contains five dynamic scenes,
including meetings, performances, and a presentation. Each was
captured through five 1080p 30 FPS egocentric videos with accurate
pose annotations. By making full use of the device, we addressed
the synchronization challenges during recording. We conducted
baseline evaluations and detailed analysis that validated the ef-
fectiveness of the dataset and provide insights for future task de-
velopment. Our dataset characteristics are compared with existing
datasets, including egocentric datasets: Ego4D [13], Ego-Exo4D [14],
EPIC-Kitchens [6–8], and 4D reconstruction datasets: N3DV [25],
D-NeRF [39], HyperNeRF [36], as summarized in Table 1.

Our contribution could be summarized as follows:
• We present the MultiEgo dataset, the first dataset for multi-
egocentric dynamic scene reconstruction. The dataset con-
tains five challenging daily social scenes, and each scene
is composed of five strictly synchronized egocentric videos
with accurate pose annotations.

• We design a customized multi-egocentric data acquisition
system and a data process pipeline, enabling hardware-level
synchronization across viewpoints and accurate pose esti-
mation.

• We conducted baseline evaluations on our dataset. The ex-
perimental results demonstrate its strong practical utility
and effectiveness for dynamic scene reconstruction tasks.

2 Related Works
Dynamic Scene Reconstruction Dataset.With the advancement
of computer vision technologies and data acquisition devices, nu-
merous dynamic scene datasets have emerged [4, 24, 25, 39, 40, 52]..

https://woxelikeloud.github.io/multiego/
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Figure 2: An overview of our MultiEgo dataset. There has 5 high-quality dynamic scenes in the dataset, each scene contains 5
egocentric views with accurate pose annotation. The total number of frames comes to 13,735.

Representative dynamic datasets such as the N3DV [25] dataset
provides multi-view video recordings from fixed perspectives to
capture dynamic scenes, where one or more performers perform
various subtle interactions, such as cooking and talking. However,
perspective coverage in N3DV is limited, and fixed viewpoints
require specialized equipment for similar data collection. The Hy-
perNeRF [36] dataset features scenes captured from a single mov-
ing viewpoint, recording brief actions such as breaking cookies or
pouring liquids. Although data in HyperNeRF can be considered
egocentric, it focuses on small-scale object-centric scenarios with
only monocular observations.
Egocentric Dataset. In recent years, egocentric vision datasets
have experienced rapid development [2, 6–9, 11, 13–15, 23, 26, 31,
32, 34, 35, 42, 45]. Prominent examples include Ego4D [13] and
EgoExo4D [14], which feature large-scale data volume and diverse
content modalities. However, these datasets typically provide only
single-view egocentric perspectives and are primarily designed for
video content understanding [27, 37, 46] rather than scene recon-
struction. With the emergence of multi-modal large models, several
human-object interaction (HOI) datasets have been proposed, in-
cluding HOI4D [31], Epic-Kitchens [6–8], and EgoDex [15]. While
these datasets advance tasks like human behavior understanding,
their design objectives and data characteristics make them unsuit-
able for direct application in dynamic scene reconstruction tasks.
For example, EgoGaussian [53] attempts to reconstruct egocen-
tric datasets like HOI4D [31] but still requires excessively complex
pre-processing, such as performing hand-object segmentation on
frames and then estimating camera poses using COLMAP [41].

3 MultiEgo Dataset
3.1 Scene Overview
To address the limitation that existing datasets are inapplicable to
multi-view egocentric dynamic scene reconstruction, we present
the MultiEgo dataset, the first dataset for multi-egocentric dynamic
scene reconstruction. The dataset contains five multi-person social
scenes, including meetings, performances, and a presentation. Each
scene has five performers wearing AR glasses to provide authentic
and reliable egocentric views. All participants signed informed

consent forms authorizing the use of facial and other biometric
data for academic research purposes.

The first scene called talking involves a discussion meeting, in
which performers take turns speaking. During this structured inter-
action, the performers tend to focus on the active speaker, resulting
in systematic rotational camera movements through natural head
rotations. This patterned motion enabled the system to capture
comprehensive scene coverage despite the limited field-of-view of
the individual cameras. Notably, although only five cameras were
deployed, human-driven camera motions introduced diverse mo-
tion patterns that effectively enriched the observed information. In
addition, the smooth wall and table surfaces of the meeting room
induce extensive specular reflections from artificial lighting sources,
accompanied by enhanced diffuse environmental reflections. This
illumination phenomenon imposes significant challenges on re-
construction methods in determining the spectral properties of
the surface reflectance while maintaining photometric consistency
under complex lighting conditions.

The second scene called statement involves a statement meet-
ing, in which the performers take turns giving speeches while being
required to stand up during their turns. During the transition from
sitting to standing, we observed rapid translational movements
caused by vertical body movement. In addition, after assuming the
standing posture, certain performers exhibited natural exploratory
behaviors characterized by horizontal head rotations, thereby en-
riching multi-perspective scene representations. Moreover, due to
occlusion constraints in seated postures where performers cannot
perceive others’ lower body regions, the standing-up action effec-
tively introduces new content in the scene, analogous to liquid
pouring. This phenomenon imposes challenges on reconstruction
algorithms.

The third scene called concert features a standing performance
paradigm with an actor and four audience members, all equipped
with AR glasses. This configuration simulates real-world stand-
ing events such as concerts or public speeches, enabling dual-
perspective analysis: (1) reconstructing actor’s embodied perfor-
mance from audience-centric viewpoints, and (2) capturing audi-
ence reactions through the actor’s egocentric viewpoint. Although
the actor constitutes the sole active visual source directed towards
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Figure 3: Pipeline of data acquisition and processing. We use a server-client system to handle synchronization, and respectively
process time, monocular pose, poses of multiple views in the first frame. Finally we obtain the images and pose tracking in 4D
domain.

the audience, the frequent head/upper-body movements during per-
formance generate dense spatial-temporal sampling of the scene,
while the audience’s motion magnitude remains small due to their
stationary postures. This introduces valuable priors for novel view
synthesis.

The fourth scene called sword focuses on the dynamic action per-
formance, where five audience members equipped with AR glasses
observe an actor performing sword-wielding demonstrations using
a long sword prop. This setup features sustained high-dynamic
content characterized by complex 3D motion patterns: the limb
movements of the actor exhibit rapid translational velocities, while
the prop generates high angular velocities during slashing motions.
These extreme motion characteristics pose significant challenges
for high-speed motion reconstruction capabilities.

The fifth scene called presentation simulates educational set-
tings, for example lecture recordings, through a slide presentation
task, in which five audience members equipped with the glasses ob-
serve an actor executing a presentation and delivering exaggerated
gestures. This setup mimics real-world projection-based presen-
tations by capturing two critical visual phenomena: (1) dynamic
occlusion shadows formed when the performer’s body blocks the
projected light path and (2) illumination-induced chromatic varia-
tions that emerge on the performer’s body as they move near the
projected screen. The latter effect arises from the complex interplay
between ambient lighting and high-luminance projector beams.

Each of the five scenes presents distinct technical challenges,
including rapid object motions, high-speed camera movements, and
specialized illumination conditions, such as specular surface reflec-
tions. These challenges represent critical prerequisites that must
be addressed before advancing multi-egocentric reconstruction to-
ward broad applications. In order for our dataset to enable rigorous
evaluation of algorithm robustness under these challenging condi-
tions, it explicitly incorporates scenarios specifically designed to
assess resilience against complex visual phenomena.

3.2 Data Acquisition
Hardware. In this paper, we select RayNeo X2 AR glasses for data
collection, which is a consumer-grade AR device. The RayNeo X2
is equipped with a camera capable of recording 1080P resolution
video at 30 frames per second. The device runs an Android oper-
ating system and supports WiFi communication. The official SDK
provides real-time 3-degree-of-freedom rotational pose estimation
from the built-in gyroscope sensor, which serves as an important
foundation for camera pose estimation.
Acquisition System. To fully exploit the capabilities of the device,
we developed a dedicated application system for data acquisition.
The system integrates the functions of video capture, synchronized
control, and sensor data collection. The system architecture adopts
a client-server model: the client program runs on the AR glasses,
continuously monitoring the WiFi channel to detect record/stop
commands from the server. The server program runs on an external
smartphone, establishing connections with the clients through a
WiFi hotspot, and employs broadcast signals to synchronize record-
ing start/end operations across multiple devices.

Once the server program broadcasts the start signal, all clients
initiate data acquisition within several microseconds, which can
be regarded as practically simultaneous activation. This level of
synchronization aligns with the requirements for multi-perspective
scene reconstruction. During data acquisition, the client simultane-
ously captures visual and sensor data streams. The camera records
1080P video at 30 frames per second while the gyroscope provides
rotation outputs at 50 Hz sampling rate. Notably, the client program
records timestamps for each data frame (both video and sensor) in
UTC with 100-nanosecond precision during collection, ensuring
temporal synchronization across modalities and devices.
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Table 2: The quantitative results of our validation experiments. Bold: Best result. Underline : Second-best result.

Method Talking Statement Concert
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

3DGStream [44] 22.1335 0.7262 0.3382 20.4199 0.6711 0.3974 21.8715 0.7551 0.3074
Deformable-3DGS [50] 23.2186 0.8023 0.3358 21.3670 0.7731 0.3819 24.1020 0.8418 0.2886
4DGaussian [49] 24.9863 0.8094 0.3353 24.0491 0.7894 0.3672 25.9235 0.8512 0.2953
4DGaussian [49] w/ timestamp 24.9286 0.8102 0.3319 24.0174 0.7875 0.3701 25.7934 0.8490 0.2998
Deformable-3DGS [50] w/ timestamp 23.4073 0.8058 0.3305 21.3836 0.7738 0.3801 24.1863 0.8427 0.2865

Method Sword Presentation Average
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

3DGStream [44] 24.0154 0.8284 0.2515 25.2535 0.8344 0.2866 22.7388 0.7630 0.3162
Deformable-3DGS [50] 21.2199 0.8603 0.2358 25.2457 0.8872 0.2372 23.0306 0.8329 0.2959
4DGaussian [49] 25.4828 0.8668 0.2671 28.2414 0.8994 0.2265 25.7366 0.8432 0.2983
4DGaussian [49] w/ timestamp 25.0993 0.8598 0.2778 28.2761 0.8995 0.2262 25.6230 0.8412 0.3012
Deformable-3DGS [50] w/ timestamp 20.9872 0.8612 0.2345 24.5876 0.8857 0.2370 22.9104 0.8338 0.2937

3.3 Data Processing
Video Post-processing. To ensure visual consistency across multi-
view egocentric videos, we applied Adobe Premiere Pro [38] post-
processing to standardize visual characteristics across all scenes.
This included white balance calibration, exposure adjustment, and
flicker removal from artificial lighting to eliminate sensor-specific
color biases. Global exposure compensation and contrast adjust-
ments further improved brightness uniformity while retaining
shadow details.

The pose estimation process consists of two components: monoc-
ular pose tracking and multi-camera pose synthesis.
Monocular Pose Tracking. We applied a comprehensive set of
state-of-the-art (SOTA) algorithms and engineering-validated clas-
sical methods to each camera’s footage within every scene. Fol-
lowing the experimental benchmarks from Camerabench [30], we
selected representative approaches including Anycam [48], Mega-
SAM [29], CUT3R [47], MonST3R [54], PySLAM [12], covering both
dynamic scene reconstruction (SfM) and simultaneous localization
and mapping (SLAM) frameworks. We performed spherical linear
interpolation [19] on the sensor’s rotational quaternion data to
estimate the rotational pose at each video frame capture moment.
We perform data fusion [1] aligning all estimated trajectories with
the interpolated sensor data. This alignment process utilized the
3-DoF rotational pose data from the official SDK to compute the
relative 6-DoF camera poses for each view.
Multi-camera Pose Synthesis.We instructed all performers to
fixate on a common object in the first frame, establishing a static
reference scene. For this initial static scene in the first frame, we
captured extensive supplementary images from various angles to
enrich the scene details and ensure robust reconstruction. All im-
ages were processed through the structure-from-motion pipeline
in COLMAP [41] to obtain initial camera poses for all views. To
maintain scale consistency across traces in monocular tracking, we
selected an additional keyframe per view that contained content
similar to the first frame but with noticeable translation. The dis-
placement between these paired frames provided scale constraints
to normalize translation components across all camera views. After

completing all the preparation steps, we integrated the poses of all
frames within the same scene into absolute poses for scene recon-
struction through global motion-guided pose synthesis. Specifically,
we applied the following procedure: 1) Accumulated relative poses
were anchored to the initial poses in COLMAP-reconstructed of
each view, 2) Translation components were scaled using the dis-
placement ratios from paired keyframes. Experimental validation
demonstrated that the resulting camera poses achieved sufficient
accuracy for scene reconstruction tasks. Our data acquisition and
processing pipeline is shown in Figure 3.

4 Experiment
4.1 Baselines
Given the absence of prior literature on multi-egocentric dynamic
scene reconstruction at the time of our dataset release, we there-
fore focus on adapting methods originally developed for general
dynamic scene reconstruction, including deformation-filed-based
methods 4DGaussian [49] and Deformable-3DGS (D-3DGS) [50],
and a streaming method 3DGSteam [44].

Due to the lack of existing datasets, these baselines cannot be di-
rectly applied to ourmulti-egocentric dynamic scene reconstruction
dataset. To evaluate our dataset’s effectiveness with these baselines,
we modified their data loading pipelines through a hard-coded ap-
proach that directly accesses per-frame images and camera poses.
This modification preserves the core reconstruction mechanisms of
the baselines while revealing their genuine performance in multi-
egocentric dynamic scene reconstruction scenarios.

4.2 Implementation Settings
We adopt PSNR, SSIM, and LPIPS as quantitative evaluation metrics,
which are widely used in scene reconstruction research. For all base-
lines, we adopt their officially recommended default settings. These
methods generally initialize scene representations using observa-
tions from the first frame and predict motions of Gaussian primes,
which works effectively for datasets with fixed or small-range cam-
era movements. However, our dataset features large-range camera
rotations that result in scene extents significantly exceeding the
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Figure 4: The visualization results from our validation experiments demonstrate that baselines employing different reconstruc-
tion strategies exhibit distinct characteristics.

visible range captured in any single frame. When extensive new
scene regions emerge across viewpoint changes, this can severely
impact performance of the method with the initialization from a
single frame. To mitigate this effect, we applied random point cloud
initialization within the complete scene space for all baselines. In
particular, we employ all available views to perform 3DGS [22]
pipeline on the randomly generated point cloud, thereby obtaining
the full scene’s Gaussian representation serving as the initialization
for 3DGStream. Employing better initialization strategies tailored
to our dataset may yield improved reconstruction outcomes.

4.3 Experiment Results
Quantitative Results. The quantitative experimental results of
all selected baselines are summarized in Table 2. The result shows
that the sword and presentation scene exhibit relatively smaller
camera rotational motion magnitudes and more static background
appearances, resulting in minimal novel background regions requir-
ing reconstruction, which hence demonstrates relatively favorable
quantitative results across methods. In contrast, the statement
scene presents large-scale camera rotations/translations combined
with extensive specular reflections, making it the most technically
challenging scenario among our dataset.
Visualization Results. The visualization results of our validation
experiments are presented in Figure 4, where 4DGaussian demon-
strates superior static scene reconstruction capabilities that align
with its favorable quantitative metrics, but exhibits limitations in
capturing high dynamic object. This performance discrepancy may
stem from the MLP-based deformation field prediction mechanism
in 4DGaussian, which prioritizes low-frequency information pro-
cessing and consequently generates overly smoothed reconstruc-
tions. In contrast, 3DGStream produces reconstructions containing
high-frequency noise but achieves the best preservation of high-
dynamic details among all baselines, which is evident in sword prop
reconstruction in the sword scene. For multi-egocentric dynamic

scene reconstruction, both high-quality background and accurate
dynamic object are critical requirements. The trade-off between
these two aspects constitutes a critical research challenge that must
be addressed in future studies aiming at this task.
Experiment About Timestamp. As described in Section 3.3, we
captured timestamps per frame. The collected timestamps closely
align with the theoretical 30 FPS video capture intervals. Neverthe-
less, we conducted experiments incorporating actual timestamps
as view-specific input in 4DGaussian and Deformable-3DGS, with
results shown in "4DGaussian w/ timestamp" and "Deformable-
3DGS w/ timestamp" of Table 2. Experimental results demonstrate
that timestamps exert varying impacts across different scenes and
methods, with performance improvements observed in some cases
and degradations in others. Incorporating timestamps transforms
the optimization from a single-scene estimation across five views
to individual scene estimations per view with more dense time sam-
pling. Although such distinctions exist, quantitative experiments
demonstrate that this discrepancy is statistically insignificant.

5 Conclusion
We present MultiEgo, the first dynamic scene reconstruction dataset
composed of multi-egocentric perspectives. Compared with previ-
ous dynamic scene reconstruction datasets and egocentric video
collections, MultiEgo provides essential data elements for dynamic
scene reconstruction tasks, including accurate camera pose annota-
tions and synchronized temporal alignment. The dataset incorpo-
rates various challenges commonly encountered inmulti-egocentric
dynamic reconstruction scenarios, such as high dynamic objects
and complex lighting conditions. We provide comprehensive de-
scriptions of the dataset’s contents. In validation experiments, we
demonstrate the effectiveness of the data set through several base-
lines. In addition, we conducted additional studies to evaluate the
impact of directly captured frame timestamps on reconstruction
performance.
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